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This experimental and theoretical study considers the dynamics and the instability of
a Lamb–Oseen vortex in a stably stratified fluid. In a companion paper, it was shown
that tilting the vortex axis with respect to the direction of stratification induces the
formation of a rim of strong axial flow near a critical radius when the Froude number
of the vortex is larger than one.

Here, we demonstrate that this tilt-induced flow is responsible for a three-
dimensional instability. We show that the instability results from a shear instability
of the basic axial flow in the critical-layer region. The theoretical predictions for
the wavelength and the growth rate obtained by a local stability analysis of the
theoretical critical-layer profile are compared to experimental measurements and
a good agreement is observed. The late stages of the instability are also analysed
experimentally. In particular, we show that the tilt-induced instability does not lead
to the destruction of the vortex, but to a sudden decrease of its Froude number,
through the turbulent diffusion of its core size, when the initial Froude number is
close to 1. A movie is available with the online version of the paper.

1. Introduction
The presence of intense and small vortices in geophysical flows is problematic

for the oceanic and atmospheric models. These structures are unresolved when they
become smaller than the mesh size used in the numerical codes, although they might
influence the stability and mixing properties of larger scales. In this paper, we consider
the stability and dynamics of such an intense vortex when its axis is slightly tilted
with respect to the direction of stratification.

In the atmosphere, the large-scale structures (of a few thousand kilometres), created
by the baroclinic instability, have a very small Froude number and a small Rossby
number. These primary structures are mainly two-dimensional and not likely to be
subject to a three-dimensional instability. However, they can be unstable with respect
to two-dimensional instabilities (Nieman, Shapiro & Fedor 1993) and create secondary
vortices with a smaller length scale (Polavarapu & Peltier 1993; Garnier, Métais &
Lesieur 1996). These intense vortices can reach a size of 10 km, which gives a Rossby
number of order 10 and a Froude number of order 1. This paper will focus on this
type of intense vortex in which the stratified effects are comparable to advection, and
in which the effect of the global rotation can be neglected. Our goal is to show that
a weak inclination of the vortex can strongly affect its dynamics.

In oceans, vortices are often observed beyond coastal tips or behind islands. They
are generated by the tide or strong currents. These vortices are usually inclined with
respect to the stratification owing to the slope of coastal regions (see for instance
Pawlak et al. 2003). When their Froude number is larger than 1, they will be subject
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Figure 1. Schematic of the experimental set-up. The rotation of the grey plate around its
upper edge generates a vortex inclined with respect to the vertical with an angle α. The light,
lens and camera allow shadowgraph visualizations.

to the instability described in this paper. However, Coriolis effects might be expected
for these vortices since the Rossby number is of order 1 here.

In Boulanger, Meunier & Le Dizès (2007), the structure of a tilted vortex was
studied experimentally and theoretically in the limit of small inclination angles. When
the Froude number is larger than 1, a critical layer was shown to appear at the
radius where the angular velocity of the vortex equals the Brunt–Väisälä frequency.
In the viscous regime, this creates a strong vertical motion of order Re1/3 in a layer
of thickness scaling as Re−1/3.

As far as we know, no stability analysis of such a tilted vortex has been performed.
However, the effect of a stable stratification on various instabilities has been
extensively studied. In the case of several vortices, the stratification stabilizes the
elliptic instability (Kerswell 2002) and transforms the Crow instability (Crow 1970)
in a so-called zig-zag instability (Billant & Chomaz 2000). For a single vortex, the
two-dimensional shear instability and the centrifugal instability are not affected by
a stable stratification in the inviscid limit (Hopfinger & van Heijst 1993). However,
Cariteau & Flór (2003) reported a new columnar instability of a stratified vortex,
which creates some vertical motion in a thin rim around the vortex and leads to a
three-dimensional instability. Although they did not add any intentional tilting of
the vortex (Cariteau 2005), we will show that this instability is probably due to a
weak misalignment of the vortex with the stratification. This previous experimental
evidence indicates that this instability is very strong and can be effective even in the
presence of very weak tilt angles.

The paper will be organized as follows. In § 2, we describe the experimental set-up
and the two-dimensional base flow of a tilted vortex. In § 3, we show experimental
evidence of this new instability, followed by a local theory in § 4. The late stages of
the instability are considered in § 5, before the conclusion in § 6.

2. Experimental set-up and base flow
2.1. Experimental details

The experimental set-up (figure 1) is explained in detail in Boulanger et al. (2007) and
only the main features are recalled here. The experiments are performed in a 150 cm
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Figure 2. Location of PIV measurement planes. (a) Transverse plane (b) vertical
longitudinal plane θ = 0, and (c) tilted longitudinal plane, θ = π/2.

long, 75 cm wide and 50 cm high Plexiglas tank, filled with a linearly stratified fluid
(made using the two-tank method). The density gradient is deduced from density
measurements of small samples of fluid every 5 cm, using a densitometer Anton Paar
DMA 35N with an accuracy of 10−4 kg l −1. By varying the effective depth of fluid
between 20 cm and 45 cm and the maximal density between 1.1 and 1.19 kg l −1, we
have been able to obtain a Brunt–Väisälä frequency ranging from 1.5 to 3 rad s−1.

The vortex is created by rotating impulsively a 10 × 60 cm2 aluminium flap in
the fluid initially at rest, using a computer controlled step-motor. This flap motion
generates a two-dimensional shear layer around the flap which detaches at the
sharpened edge of the flap, and rolls up into a very laminar vortex. The motion
profile of the flap was chosen carefully to obtain a nearly Gaussian vortex and was
defined by imposing the angular velocity of the flap as a function of its angle as:

Θ̇ = Θ̇max

0.42

Θ + 0.017
[1 + exp (−(Θ/0.26)5/4)]. (2.1)

It consists of a rapid acceleration of the flap, followed by a gradual slow-down up
to the angle of π/2 rad. The circulation of the vortex is varied by modifying the
maximum angular velocity Θ̇max between 0.01 and 0.5 rad s−1. The inclination of the
vortex is obtained by tilting the flap with respect to the vertical in the initial plane of
the flap: it was varied in the range 0 to 0.38 rad.

Particle image velocimetry (PIV) measurements of velocity fields were obtained
by seeding the tank with Sphericel hollow glass spheres 110 P8 (Potter Industries),
whose diameter ranges from 11 to 18 µm and whose density is approximately 1.1.
The particles are illuminated by a luminous sheet of 3–5 mm thickness, created by a
continuous 5 W argon-ion laser. Image pairs are recorded by a digital PIV camera
(Kodak Megaplus Es 4.0) with a resolution of 2048 × 2048 pixels and treated by a
cross-correlation algorithm developed for flows with high-velocity gradients at the
laboratory (Meunier & Leweke 2003). PIV measurements have been made in three
different planes (figure 2). The first one is perpendicular to the vortex axis and provides
the horizontal characteristics of the initial vortex. The two other planes correspond
to two orthogonal longitudinal planes, one plane being vertical (θ = 0) and the
other being tilted (θ = π/2). These instantaneous two-dimensional velocity fields are
extremely useful for the study of the instability since they permit us to follow the
evolution of the vortex in time, which would be impossible using a two-dimensional
reconstruction of point measurements.

Shadowgraph visualizations were also carried out, to observe the two-dimensional
and three-dimensionl spatial distribution of density inside the vortex. For this purpose,
the stratified fluid is illuminated by a large beam of parallel light, created by an intense
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Figure 3. (a) Theoretical contours of the axial velocity of a tilted vortex in a transverse plane.
(b, c) Theoretical (solid line) and experimental (circles) axial velocity profiles in two different
longitudinal planes, (b) section A–A: θ = 0, (c) section B–B: θ = π/2. (a) The dashed line
indicates the location of the critical layer. Re= 450, F = 3.2, α = 0.07 rad.

light placed behind a small diaphragm located 2 m away from the tank. By placing a
large lens (of diameter 30 cm and of focal distance 50 cm) behind the tank, it is thus
possible to obtain an image of the density distribution. These images are recorded
by a 2000 × 2000 pixel greyscale camera located behind the focal point of the lens.
A small disk of 1 mm diameter was positioned exactly at the focal point of the lens,
which enhances the contrast of the images.

2.2. Characteristics of the tilted vortex

The vortex is completely defined by its profile of angular velocity, which is very close
in our experiments to the profile of a Gaussian (Lamb–Oseen) vortex:

Ω0(r) =
vθ (r)

r
=

Γ

2πr2
(1 − exp(−r2/a2)). (2.2)

In our experiments, the circulation Γ was varied between 17 and 42 cm2 s−1. The core
size a is slowly varying with time between 0.9 and 1.1 cm owing to viscous effects, but
this dependency can be neglected on the time scale of the instability we shall describe
below.

In Boulanger et al. (2007), it was shown that tilting the vortex with respect to the
direction of stratification with an angle α creates a critical layer at the radius rc where
the angular velocity of the vortex Ω0(r) is equal to the Brunt–Väisälä frequency. This
critical layer is observed for moderate Froude numbers larger than 1 only, such that
the critical radius rc exists (Ω0(r = 0) > N) and is located not too far from the vortex
centre (Ω0(r = 0) < 5N ).

The axial velocity field created by tilting the vortex is plotted in figure 3(a) and
compared with the viscous critical-layer profiles in figure 3(b, c). These figures are
similar to those presented in Boulanger et al. (2007) with a minor modification to
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the velocity profiles: they have been enlarged around the critical layer. This velocity
field exhibits a complex spatial structure: in the vertical longitudinal plane (θ = 0),
the axial velocity has a jet-like profile (see figure 3b); in the tilted longitudinal plane,
it looks like a shear layer (see figure 3c). There is a good agreement between theory
and experiment on the structure and amplitude of the velocity field, although there
are some large uncertainties (of the order of 50%) for r < rc owing to the deformation
of the images by a strong refraction at the critical layer. The theory predicts that the
size of the critical layer scales as Re−1/3 and the amplitude of the density and the
vertical velocity scale as αRe1/3. This leads to a scaling of the azimuthal vorticity as
αRe2/3.

In the following, we will non-dimensionalize lengths by the vortex core size
a. Moreover, the inverse of the angular velocity at the centre of the vortex
Ω0(r = 0) = Γ/2πa2 will be used as the time scale of the flow. This leads to non-
dimensionalize velocities by Γ/2πa. Finally, we will non-dimensionalize densities
by the density of the fluid ρf at z =0. Our system is thus characterized by five
non-dimensional parameters. The inclination angle α is varied from 0 to 0.38 rad.
The Reynolds number Re = Γ/(2πν) (ν being the kinematic viscosity) is varied
between 160 and 800. The Froude number F = Γ/(2πa2N ) ranges from 1.5 to 4.3. The
Schmidt number Sc = κ/ν is close to 700. The last parameter L compares the vertical
stratification length to the vortex core size: L = ρ/(a∂ρ/∂z). In our experiments, this
Boussinesq parameter ranges between 100 and 400, which justifies the use of the
Boussinesq approximation obtained by assuming L infinite.

3. Three-dimensional instability
3.1. Dye visualizations

For high Reynolds numbers, the vortex was found to be unstable with respect to
a three-dimensional perturbation. The time-sequence of figure 4 shows the temporal
evolution of the tilted vortex by shadowgraph visualizations. The vortex is viewed
from the side perpendicularly to the tilting plane. This view reveals the density
structures in the vertical plane (θ = 0). The vortex is thus tilted with an angle of
0.07 rad on the images.

At the beginning, just after the end of the flap motion (figure 4a), the vortex is
cylindrical and contains two strips created by the critical layer. At t = 1 s, these
strips are subject to a sinusoidal undulation (figure 4b), which breaks the invariance
along the axis of the vortex. This perturbation is initially confined within the strips.
At later stages (figure 4c, d), the perturbation grows and becomes visible all around
the vortex. This is due to an increase of the contrast associated with the increase
of ∂2ρ/∂z2 and not to a propagation of the perturbation around the vortex, as is
attested by other visualizations made from different view angles. The undulation of
the two strips is then amplified and gives birth to structures characteristic of vortices
rotating in the clockwise direction (figure 4d). The two alleys of vortices alternate on
each side of the vortex and the vortex centres are linked by two strips which create
a zigzag-like structure. This perturbation thus looks like a secondary spiral vortex
which is rolled-up around the tilted vortex in a helical mode. However, this is not
the case, because it would create vortices of opposite sign on each side of the vortex.
On the contrary, it can be seen clearly in figure 4(d) that the vortices are clockwise
(negative vorticity in this plane) on both sides of the vortex. It is thus a perturbation
which grows almost independently on both sides of the vortex. All of this suggests
that the instability is localized in the critical layer, and not influenced by the global
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Figure 4. Shadowgraph sequence of the vortex instability in a vertical longitudinal plane
(θ = 0). The time interval is 1.1 rotation period. F =3, Re= 720, α =0.07 rad. A movie of the
same instability, obtained for slightly lower Reynolds and Froude numbers, is available with
the online version of the paper.

structure of the vortex. These shadowgraph visualizations are very similar to the
pictures presented by Cariteau (2005), and we suspect that it is the same instability
that they observed although they did not tilt the generating plate.



Tilt-induced instability of a stratified vortex 7
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Figure 5. Shadowgraph sequence of the vortex instability in a tilted longitudinal plane
(θ = π/2). The time interval is 1.1 rotation period. F = 3, Re= 720, α = 0.07 rad.

At late stages, the instability saturates and the co-rotating vortices finally break
down, leading to a strong mixing, in which some coherent structures are still visible.

Figure 5 shows the temporal evolution of the vortex in the tilted plane (θ = π/2).
Although the perturbation starts as an undulation of the critical layer (figure 5a) as
in figure 4, the perturbation is then rather different. It rapidly creates an alley of
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alternate vortices on each side of the vortex (figures 5b–d). The instability thus looks
like a centrifugal instability, although the vortex is stable with respect to the Rayleigh
criterion. In fact, the structure of the instability is very similar to a von Kármán
vortex street on each side of the vortex. This could be related to the presence of a jet
in the critical layer.

In this section, the shadowgraph visualizations were used to reveal the spatial
structure of the density field from which the velocity field was inferred. However, it
is not clear that the density field is simply advected by the velocity field, and there
might be a three-dimensional perturbation of the density without any perturbation
of the velocity field. To confirm the validity of the previous arguments, we provide in
the following sections some PIV measurements, which give directly the velocity field
in these longitudinal planes.

3.2. PIV measurements

The time-sequence of figure 6 shows the temporal evolution of the azimuthal vorticity
in the tilted plane (i.e. θ = π/2) obtained by PIV measurements. In this plane, the
tilted vortex creates two critical layers on each side of the vortex, containing some
strong negative (black) vorticity (see figure 6a). This corresponds to the vorticity of
the shear layer created by tilting (see figure 3c). In fact, each critical layer is made
of one band of strong negative vorticity, surrounded by two smaller bands of weak
positive vorticity which are hardly visible on figure 6(a, b). At the vortex centre, the
vorticity field contains large errors, which are due to the presence of many spurious
vectors. This is caused by the images being blurry at the vortex centre owing to large
deviations of the luminous rays by the critical layer.

The perturbation appears at first as a periodic modulation of the negative vorticity
layers on both sides of the vortex (figure 6b, d). The instability does not induce any
motion in the vortex core: it is clearly localized in the critical layer. The perturbation
then leads to the formation of co-rotating vortices of negative vorticity (figure 6e, f ).
The wavelength is similar on both sides and the two alleys of vortices are alternate,
as was observed on the shadowgraph visualizations of figure 4. The positive layers
are only slightly modified by the perturbation: they split into weak vortices under
the influence of the negative-layer evolution. It can be noted that these vortices are
created extremely rapidly, in approximately half a rotation period 2π/Ω0(r) between
figures 6(b) and 6(e).

The presence of an alley of co-rotating vortices is characteristic of the shear
instability leading to Kelvin–Helmholtz billows at late stages. This explains why the
vortices rotate in the same direction on both sides of the vortex in the visualizations of
figure 4. It is thus a possible explanation of the instability. However, it is curious to see
that the structure observed on the velocity field of the tilted plane (θ = π/2) is observed
on the visualizations of the vertical plane (θ = 0) and not on the visualizations of the
tilted plane. In fact, the density structures are advected by the velocity field and the
amplitude of the density perturbation is thus maximal at the end of the forcing by
the velocity perturbation, i.e. a quarter of a turn later.

At late stages, the growth stops, and the structures lose their coherence, leading to
a partial reformation of the vorticity layers (see figure 6g). This non-uniform vorticity
layer sometimes creates again some isolated vortices, but the flow is found to be less
organized and very turbulent.

Figure 7 shows the azimuthal vorticity obtained by PIV measurements in the vertical
plane (i.e. θ = 0). The temporal evolution of the vorticity could not be obtained
because the vortex slowly moves inside the water tank and a fixed measurement plane
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Figure 6. PIV sequence of the instantaneous azimuthal vorticity field in a tilted longitudinal
plane (θ = π/2), starting 10 rotation periods after the flap motion. The time interval is 0.5
rotation period. F = 2.1, Re = 560, α = 0.12 rad.
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Figure 7. PIV measurement of the instantaneous azimuthal vorticity field in a vertical
longitudinal plane (θ = 0), approximately 12 rotation periods after the flap motion. F = 2.1,
Re= 560, α = 0.12 rad.

contains the axis of the vortex only at one instant in time. The centre of the vortex
was masked because it contains many spurious vectors (as in figure 6), owing to the
refraction of the luminous rays when they cross the critical layer.

In this vertical plane, the tilted vortex creates a jet on each side of the vortex.
Each jet creates two vertical layers of opposite vorticity. Figure 7 shows that the
perturbation is made of a periodic modulation of each vorticity layer, which creates
an alley of alternate counter-rotating vortices. This is characteristic of the sinuous
instability of a jet. This structure can be linked to the structure of the perturbation
observed on the shadowgraph visualization of figure 5. However, it is again surprising
to see that these structures are not observed in the same plane for the velocity field.
As in the case of the Kelvin–Helmholtz instability, it can be explained by the density
being advected by the vortex.

3.3. A local instability

The dye visualizations and the PIV measurements have shown that the instability is
localized in the critical layer and that it does not modify the vortex core. Moreover,
this instability appears rapidly compared to the advection time around the vortex.
These two arguments mean that the instability is linked to the local properties of the
critical layer rather than to the global structure of the vortex itself. This will justify
the local stability analysis of the critical layer in the next section. Figure 8 shows the
structure of the instability. The velocity profiles are plotted for each plane inside
the critical layer and the secondary vortices are represented by spirals as would be
obtained by the roll-up of a line of dye.

The critical layer has a complex structure and several instabilities are thus
candidates. In the tilted plane (θ = π/2), the velocity profile contains a strong shear
and is subject to the Kelvin–Helmholtz instability. In the vertical plane (θ = 0), the
velocity profile is a jet-like profile and is subject to jet instabilities. Moreover, in the
tilted plane, there is a strong density layer which, added to the centrifugal force,
could lead to a Rayleigh–Taylor instability. This last instability would also lead to an
undulation of the critical layer, as in the visualizations.
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Figure 8. Schematic of the tilt-induced instabilities occurring in the critical layer of the
vortex: a shear instability for θ = ± π/2 and a jet instability for θ = 0 and θ = π.

In order to determine which mechanism is responsible for the instability observed
in the tilted vortex, we must evaluate the growth rate associated with each of these
possible instabilities. Moreover, it is also important to quantify in which conditions
the local instability can be sufficiently strong not to be affected by the mean angular
advection around the vortex. The next section addresses these issues theoretically.

4. Stability analysis of the viscous critical-layer solution
In this section, we provide a theoretical analysis of the dynamics of the tilted vortex.

As demonstrated in Boulanger et al. (2007), it is convenient to analyse the flow with
new coordinates where x is modified into x − tan αz, and y and z are unchanged in
such a way that in each horizontal plane z = const the point x = y =0 corresponds
to the vortex centre. With these variables, the governing equations for the velocity
u = (u, v, w), pressure p and density ρ are in cylindrical coordinates:

Du

Dt
− v2

r
− w tan α

∂u

∂x
− w

tan α sin θ

r
v = − 1

ρ

∂p

∂r
+

1

Re
(
u)r , (4.1a)

Dv

Dt
+

uv

r
− w tan α

∂v

∂x
+ w

tan α sin θ

r
u = − 1

ρr

∂p

∂θ
+

1

Re
(
u)θ , (4.1b)

Dw

Dt
− w tan α

∂w

∂x
= − 1

ρ

∂p

∂z
+

tan α

ρ

∂p

∂x
− L

F 2
+

1

Re

w, (4.1c)

Dρ

Dt
− w tan α

∂ρ

∂x
= 0, (4.1d)

1

r

∂(ru)

∂r
+

1

r

∂v

∂θ
+

(
∂

∂z
− tan α

∂

∂x

)
w = 0, (4.1e)

with

D

Dt
=

(
∂

∂t
+ u

∂

∂r
+

v

r

∂

∂θ
+ w

∂

∂z

)
(4.2a)

∂

∂x
= cos θ

∂

∂r
− sin θ

r

∂

∂θ
. (4.2b)
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The problem is characterized by the angle α, the Froude number F , the length ratio
L and the Reynolds number Re. The diffusion of density has been neglected. Note
that the gravity g is given by L/F 2 in term of these parameters.

As shown in Boulanger et al. (2007), a basic flow solution can be obtained in the
limit of small α, large Reynolds numbers and large L in the form

(ub, vb, wb, pb, ρb) = (0, V0(r), 0, p0(r, z), ρ0(r, z)) + α
(u1

L
,
v1

L
, w1,

p1

L
,
ρ1

L

)
eiθ + c.c.,

(4.3)
where the first term represents an axisymmetric vortex, and the second term the
first-order corrections in α and 1/L induced by tilting. This solution is singular at
the critical point rc defined by Ω0(rc) = 1/F , and a specific approximation with a
local viscous variable r̄ = Re1/3(r − rc) was constructed in Boulanger et al. (2007) to
describe the solution near this point. The viscous critical-layer solution was shown to
exhibit strong shear which is believed to be responsible for the instability observed
in the experiments. For this reason, we now perform a local stability analysis of the
critical-layer solution.

As shown in Boulanger et al. (2007), the basic flow expands in the critical layer as:

ub =
α

LRe1/3
Re[ū1(r̄ , θ)], (4.4a)

vb = V0c +
r̄V ′

0c

Re1/3
+

α

L
Re[v̄1(r̄ , θ)], (4.4b)

wb = αRe1/3Re[w̄1(r̄ , θ)], (4.4c)

pb =
ρ0cL

2e−z/L

F 2

(
1 +

αF 2

L3
Re[p̄1(r̄ , θ)]

)
, (4.4d)

ρb = ρ0ce
−z/L

(
1 +

αRe1/3

L
Re[ρ̄1(r̄ , θ)]

)
, (4.4e)

where we have kept the first-order terms in α and 1/L only. In these expressions, V0c

and V ′
0c are defined as the azimuthal velocity and its derivative at rc. The functions

ū1, v̄1, p̄1 and ρ̄1 are connected to the critical-layer solution

w̄1(r̄ , θ) =
πrc

F 2|2Ω ′
0c|2/3

Hi
(
i|2Ω ′

0c|1/3r̄
)
eiθ , (4.5)

via the relations

ρ̄1 = −iFw̄1 , (4.6a)

dp̄1

dr̄
= −rcρ̄1

F 2
, (4.6b)

v̄1 = −Fp̄1

rc

, (4.6c)

dū1

dr̄
= −i

v̄1

rc

. (4.6d)

The function Hi appearing in (4.5) is the Scorer’s function (see Abramowitz & Stegun
1965, p. 448) and Ω ′

0c is the derivative of the angular velocity at rc. The theoretical
profiles plotted in figures 3(b) and 3(c) for θ = 0 and θ = π/2 correspond to the real
part and imaginary part of (4.5), respectively.

As the base flow varies on a Re−1/3 radial length scale in the critical layer, it is natural
to search three-dimensional perturbations varying on a similar axial length scale and
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thus to introduce a new axial variable z̄ = Re1/3z. However, the angular variation
of the base flow is weak and no high azimuthal wavenumber perturbation has
been observed in the experiments. Therefore, we shall consider only small azimuthal
wavenumber perturbations.

In the limit of small α, large Reynolds numbers and large length ratio L, the
perturbation equations obtained by linearizing the system (4.1a)–(4.1e) around the
local base flow (4.4a)–(4.4e) can then be reduced into the following form:

(
∂

∂t
+

1

F

∂

∂θ
+ Re(w̄1)αRe2/3 ∂

∂z̄

)
u − 2

v

F
= −∂p

∂r̄
, (4.7a)

(
∂

∂t
+

1

F

∂

∂θ
+ Re(w̄1)αRe2/3 ∂

∂z̄

)
v + ω0cu = 0, (4.7b)

(
∂

∂t
+

1

F

∂

∂θ
+ Re(w̄1)αRe2/3 ∂

∂z̄

)
w + αRe2/3Re(w̄′

1)u = −∂p

∂z̄
− ρ

F 2
, (4.7c)

(
∂

∂t
+

1

F

∂

∂θ
+ Re(w̄1)αRe2/3 ∂

∂z̄

)
ρ + αRe2/3Re(ρ̄ ′

1)u − w = 0, (4.7d)

∂u

∂r̄
+

∂w

∂z̄
= 0 . (4.7e)

The O(Re−1/3) viscous forces, the O(1/L) non-Boussinesq effects and the O(αRe1/3)
advection terms of the base flow correction by the azimuthal velocity of the
perturbation, are all negligible with respect to the dominant O(1) or O(αRe2/3)
advection terms associated with the main rotation or the axial velocity field induced
by tilting. The O(α/L) radial buoyancy force induced by the radial variation of the
density, which is responsible for the Rayleigh–Taylor instability, is also negligible.

The above system of equations is complicated because it is inhomogeneous with
respect to both r̄ and θ . Local perturbations are advected around the vortex and
modified during their angular rotation owing to the dependency of w̄1 and ρ̄1 on θ . Yet,
the experimental observations discussed in the previous section tend to demonstrate
that the characteristics of the perturbations are mainly associated with the local
axial velocity profile, and that its growth results from a local process. In other
words, angular advection of the perturbation by the vortex is expected to be small
during the growth of the perturbation. This amounts to neglecting the term F −1∂θ

in the (4.7a)–(4.7d) in front of αRe2/3. This hypothesis has several consequences. The
terms −2v/F in (4.7a), ω0cu in (4.7b), ρ/F 2 in (4.7c) and w in (4.7d) also become
negligible. This means that if the dynamics of the perturbations is not affected by the
angular advection, it is neither affected by vertical stratification nor Coriolis effects
in these dimensionless variables. However, the instability is indirectly related to the
stratification through the position and amplitude of the critical layer (which define
the dimensionless variables). The perturbation then follows the dynamics of two-
dimensional perturbations in a parallel unstratified shear flow αRe2/3w̄1(r̄ , θ) where θ

can be considered as a parameter.
If we normalize spatial and time variables by

δc =
1

|Ω ′
0cRe|1/3

, (4.8a)

τc =
|Ω ′

0c|1/3F 2

rcαRe2/3
, (4.8b)
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Figure 9. (a) Maximum growth rate versus the axial wavenumber of the most unstable mode.
(b) Most unstable wavelength as a function of the Reynolds number. The theoretical lines
correspond to a jet profile (θ = 0) for a dashed line and to a mixing layer profile (θ = π/2) for
the solid line. Experimental data have been obtained for α = 0.03 rad (◦), α = 0.07 rad (�),
α = 0.14 rad (♦), α = 0.23 rad (+), α = 0.30 rad (∗), α = 0.38 rad (�).

such that

r̃ = r̄ |Ω ′
0c|1/3 = (r − rc)/δc, (4.9a)

z̃ = z̄|Ω ′
0c|1/3 = z/δc, (4.9b)

t̃ = t/τc, (4.9c)

w̃1 = αRe1/3w̄1τc/δc = Re

(
π

22/3
Hi

(
21/3r̃

)
eiθ

)
, (4.9d)

a familiar Rayleigh equation,

(−iω̃ + ik̃w̃1)

(
∂2

∂r̃2
− k̃2

)
ũ + ik̃w̃′′

1 ũ = 0, (4.10)

is obtained for the radial velocity amplitude ũ of the normal mode u(r̃ , z̃, t̃) =
ũ(r̃)eiω̃t̃−ik̃z̃.

The maximum growth rate Im(ω̃) versus k̃ of the perturbation to the profile w̃1

is plotted in figure 9 for θ = 0 and θ = π/2. We recall that θ =0 corresponds to
the vertical plane in which w̃1 has a jet profile (figure 3b). The other value θ = π/2
corresponds to the tilted plane in which w̃1 has a mixing layer profile (figure 3c).
As expected, the local mixing-layer profile is slightly more unstable than the jet, and
classical results of stability are recovered (see Drazin & Reid 1981). The most unstable
mode of the mixing layer is stationary with a growth rate

Im
(
ω̃max

ML

)
= σmax

ML τc ≈ 0.12, (4.11)

reached for

k̃max
ML = kmax

ML δc ≈ 0.68. (4.12)

The most unstable mode of the jet is a sinuous mode with

k̃max
J = kmax

J δc ≈ 0.75. (4.13)
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Figure 10. Evolution of the amplitude of the perturbations from shadowgraph visualizations
for Re = 700, F = 3.8 and α = 0.23 rad.

This mode has a growth rate

Im
(
ω̃max

J

)
= σmax

J τc ≈ 0.11, (4.14)

and contrarily to the mixing-layer mode, it is propagating with a phase velocity

cJ

τc

δc

≈ 0.24 . (4.15)

Experimental estimates for the growth rate have also been added in figure 9. They
have been obtained from shadowgraph visualizations in the vertical longitudinal
plane. For this purpose, the amplitude of the sinusoidal undulation of the critical
layer was measured manually on two wavelengths on each side of the vortex. This
leads to 10 determinations of the amplitude of the perturbation as a function of time.
They are plotted in figure 10 where the uncertainty can be as large as 20%. In this
figure, the amplitude increases exponentially, which leads to the determination of the
growth rate. However, these growth rate measurements contain a large uncertainty
for various reasons. First, the advection of the structures around the vortex can
drastically increase or decrease the growth of the amplitude if the perturbation is
not homogeneous in θ . Secondly, there is a competition between several wavelengths,
which makes it hard to follow exactly the same maximum and minimum of the
undulation. All of this induces a large uncertainty in the determination of the growth
rate, whose error can be as large as 50%.

Figure 9(a) shows that the growth rates measured experimentally are, in general,
smaller than the theoretical predictions and can be as small as half the theoretical
value. This is not surprising because the theory does not take into account the
stabilizing viscous and advection effects. Moreover, as explained above, the presence
of various wavelengths might introduce a small bias toward smaller values during
the experimental determination of the growth rate. Figure 9(b) shows the measured
wavelength as a function of the Reynolds number. It is very close to the theoretical
value of the maximum growth rate. The results are apparently slightly dependent
on the Reynolds number, showing that smaller wavelengths are obtained for larger
values of the Reynolds number. This is surprising because viscosity is expected to
damp preferentially the smaller wavelengths. Further data are required in order to
confirm this slight dependency.
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For large Froude numbers, a theoretical estimate for τc can be obtained. In this
limit, the critical layer is far from the vortex centre in a region where Ω0(r) ∼ 1/r2.
The critical radius rc and Ω ′

0c can therefore be expressed in terms of F such that
we obtain (F |Ω ′

0c|1/3/rc) ≈ 21/3 for large F . By plotting (F |Ω ′
0c|1/3/rc) versus F (see

figure 11), we can see that this estimate applies approximatively as soon as F > 1.5.
It follows that τc ∼ F/(21/3αRe2/3) for F > 1.5. The consequence is that the product
σmax

ML F , which compares the maximum growth rate to the angular advection frequency,
becomes independent of the Froude number. It is given (for F > 1.5) by

σmax
ML F ≈ 0.1αRe2/3. (4.16)

A priori, the theory requires that this product must be large, which means

αRe2/3 	 10. (4.17)

Figure 12 shows the experimental stability diagram of the tilt-induced instability.
Three types of behaviour have been observed. For high Reynolds numbers and high
tilt angles, the flow presents the instability described previously. The corresponding
parameter region has been marked as light grey in figure 12. As predicted by the
theory, this instability appears for Froude numbers larger than 1 and for αRe2/3

sufficiently large. When the Froude number is smaller than 1, the critical layer
disappears and no instability was observed. When the parameter αRe2/3 becomes
small (of the order of 5), we have observed that the critical-layer establishment is
followed by the development of non-stationary and non-persistent disturbances. After
the disappearance of the disturbances, the critical layer starts to beat at the Brunt–
Väisälä frequency. This regime is indicated in dark grey in figure 12. It is found for
αRe2/3 decreasing from 10 to 3 when the Froude number increases from 1 to 4. It
is not clear whether this region tends to αRe2/3 = 0 for larger Froude numbers. We
have not been able to explore this domain of parameters because it corresponds to
very small tilt angles which are too strongly affected by the remnant motions of the
fluid in the tank.

5. Late stages
We have also analysed the evolution of the tilted vortex when the instability is

strongly active. PIV measurements were made in a horizontal plane in order to study
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Figure 12. Experimental stability diagram of the tilt-induced instability for various inclination
angles α of the vortex. Each experiment can present a stable flow (�), an unstable flow (◦) or
a beating of the perturbation (∗).

the two-dimensional characteristics of the final vortex. The two-dimensional velocity
fields show that the vortex remains very close to axisymmetric and that the mean
velocity profile is fitted very well by the profile of a Gaussian vortex defined by
(2.2). The circulation and the core size were thus evaluated as a function of time
for three different tilt angles and for two different Reynolds numbers by fitting the
experimental data with the Gaussian vortex.

The circulation Γ of the vortex is shown in figure 13(a) as a function of time. The
uncertainty is very small, but it may depend slightly on the method used for the fit
of the experimental data. The overall error is smaller than 5%. The dotted symbols
correspond to a vertical vortex (used as a reference), for which the circulation remains
constant after a vortex formation time of approximately 5 s. Open symbols show the
results of a vortex tilted with an angle α = 0.12 rad. For this tilt angle, the three-
dimensional perturbation appears around t = 9 s for both Reynolds numbers. The
circulation is roughly constant, although it increases by about 30% for the smaller
Reynolds number and decreases by about 15% for the larger Reynolds number. The
vortex is not broken by the instability, even though the instability is very active. This is
consistent with Kelvin’s theorem predicting that the circulation should be conserved.
The small variations of the circulation are probably due to slight modifications of the
vortex profile during the instability.

The square of the core size a2 is plotted in figure 13(b) as a function of time. The
uncertainty for this parameter is slightly larger than for the circulation: the error can
be as high as 10% for the tilted vortex owing to strong refractions in the turbulent
regions. For a vertical vortex, it increases linearly with time owing to viscous diffusion,
with a slope 4ν (shown as thick lines) corresponding to a non-stratified Gaussian
vortex. For a vortex tilted with an angle α = 0.12 rad, the initial evolution of the
core size is similar, showing that the formation of the vortex is weakly influenced by
the tilt angle. However, the core size jumps suddenly to a large value after the onset
of the instability, when the Reynolds number is equal to 2000. This comes from the
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Figure 13. Temporal evolution of (a) the circulation and (b) the core size of a tilted vortex.
Dotted symbols are the reference vertical vortex. Open symbols correspond to a tilt angle
α = 0.12 rad and a Reynolds number Re = 2000 (◦) and Re = 4200 (�). (a) The solid lines
are experimental data fits. (b) The slope of the lines is calculated from the viscous evolution
of a Gaussian vortex and the grey area indicates the position and width of the critical layer
for the Re = 2000 (◦) experiment.

large dispersion caused by the instability which enhances the diffusion of the vorticity
and creates an artificial growth of the core size. The final vortex has a core size 50%
larger than in the absence of instability. Such a sudden increase of the core size has
not been observed for a higher Reynolds number (Re = 4200) although the instability
was more active there. This can be explained by the instability being located much
farther from the vortex centre in that case, because the Froude number is twice as
large. The position of the critical layer can be calculated for these two experiments.
For the lower Reynolds number, it is indicated in figure 13(b) by the grey area. We
can see that this region is close to the core radius when the instability develops.
On the contrary, the grey area would be outside the figure for the higher Reynolds
number, since it is located around r2

c ≈ 10 cm2. For the lower Reynolds number, the
sudden increase of the core size induces a sudden decrease of the Froude number and
a disappearance of the critical layer. This might explain why the instability saturates
and creates only a beating of the flow, probably associated with the oscillation of
a stable Kelvin mode. After the turbulence has slowed down, the core size seems to
increase again as for a Gaussian vortex.

We can infer from these observations that at high Reynolds numbers, the instability
of a tilted vortex will not break the vortex, but will increase its core size if its Froude
number is close to 1.

6. Conclusion
In this paper, we have analysed the dynamics of a tilted vortex in a stratified fluid for

small inclination angles, large Reynolds numbers and Froude numbers larger than 1.
In a previous paper (Boulanger et al. 2007), we showed that when F > 1, tilting

induces a strong axial flow and important density variations in a cylindrical region
located near a critical radius where the Brunt–Väisälä frequency is equal to the
angular velocity of the vortex. Moreover, it was also shown that these corrections to
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the rotating flow were captured well by a viscous critical-layer analysis: the axial flow
was demonstrated to have an m =1 azimuthal structure, and radial profiles which vary
from jet in the vertical plane (θ = 0) to mixing layer in the tilted plane (θ = π/2). Here,
we have demonstrated experimentally that the axial flow correction is responsible for
a violent instability characterized by the formation of small co-rotating vortices on
either side of the vortex. The growth rate and the spatial structure of the instability
mode have been obtained using visualizations and PIV measurements, and compared
to the theoretical predictions obtained from a local stability analysis of the radial
profile of axial flow in the viscous critical layer.

A good quantitative agreement has been obtained for the wavelength of the modes
supporting the hypothesis that the instability is mainly governed by the local stability
characteristics for the experimental parameters we have considered. However, we have
also observed that experimental estimates for the instability growth rate were up to a
factor 2 below the local theoretical predictions. We have attributed this discrepancy
to the large uncertainties found in the experimental measurements, to the possible
bias due to the competition between several wavelengths and to neglected viscous
and advection effects in the theory.

The theoretical description has permitted us to show that, as soon as F > 1.5, the
condition for the validity of the local approach does not depend on the Froude number
and only requires the product αRe2/3 to be large. This product is also expected to be
the parameter controlling the stability of the tilted vortex: the dimensional growth
rate is shown to be equal to 0.1αRe2/3N , N being the Brunt–Väisälä frequency. When
this product is small, the local instability is in competition with the angular advection
of the vortex: the vortex becomes stable because local perturbations do not have
time to grow sufficiently before being advected. In our experiments, we have observed
that the stability threshold was slightly Froude-number dependent: it varied from
αRe2/3 = 10 to αRe2/3 = 3 when the Froude number increases from 1 to 4.

We have also looked at the evolution of the vortex after the development of the
instability. We have observed that the instability does not break the vortex and its
circulation does not change significantly. However, the instability can increase the
core size of the vortex by 50% and hence decrease its Froude number below the
threshold for the instability. This effect is observed only when the Froude number
is small enough (between 1 and 3), such that the critical layer is close to the vortex
centre.

It is striking to see that this instability occurs for tilt angles as small as 0.03 rad
(2◦) at high Reynolds numbers, and is thus likely to happen in most situations. We
have observed that the tilt angle of the vortex could vary from at least 1◦ owing to
the remnant motions in the tank. We suspect that it was the case in the experiments
of Cariteau (2005), who observed exactly the same instability without any intentional
tilt of the vortex. We thus expect this instability to occur in real geophysical flows,
where the Reynolds numbers are much higher than in laboratory experiments. A
consequence would be that vortices with a Froude number close to 1 are subject
to this instability and will thus decrease their Froude number below 1, where the
instability disappears. Such a defect of vortices with Froude number close to 1 might
be visible in oceanic and atmospheric data.

Finally, it is clear that this instability creates a strong vertical mixing of the stratified
fluid. This mixing mechanism is different from the simple overturning mechanism
which is often invoked in the ocean (Farmer, Pawlowicz & Jiang 2002). It will be
now interesting to quantify its real contribution to the global mixing properties of the
ocean.
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We would also like to mention that Schecter, Montgomery & Reasor (2002) have
examined a situation in which a local tilting was created by a three-dimensional linear
Rossby wave. In their case, a critical layer is also present, but its role is to damp the
linear Rossby wave and then favour the realignment of the vortex with the direction
of stratification. It is not clear what the structure of the flow is in that critical layer
and whether secondary instabilities such as the one described here could develop.

The support of ACI grant ‘Prévention des catastrophes naturelles’ by the French
Ministry of Research is gratefully acknowledged.
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Cariteau, B. 2005 Etude de la stabilité et de l’interaction de cyclones intenses en fluide stratifié.
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